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8. Generation of Tsunamis 
8.1 Generation of Tsunamis 
 Most tsunamis are generated by the crustal motion of a sea bed accompanied by large 
earthquakes.  Earthquakes occur as a result of dislocation on a fault plane. In general, 
crustal motion can cause vertical motion, upheaval, or subsidence in a sea bed. It is 
possible to calculate the distribution of sea bed displacement by using a set of fault 
parameters: (1) fault length, (2) width, (3) dip (inclination) angle of the fault plane, (4) 
depth of the upper side of the fault plane, (5) and (6) position (longitude and latitude) of 
a vertex of the plane, (7) “strike” (geological term) direction, (8) amount of dislocation, 
and (9) “rake angle” of the dislocation.   
    In the present chapter, we assume that the displacement of the sea bed has a 
uniform value in a circular area and that there is no displacement outside the area. We 
take a coordinate system with the origin at a point on the averaged sea surface, and 
take positive z -axis in the vertical direction. The polar coordinate system ),( θr  is 
assumed in the horizotal direction, as shown in the figure. 

 
            Fig.1   Definitions of notations 
 We assume that the motion of the displacement of the sea bed is given as follows: 

),,( trDz θη+−=      (8-1) 
We assume no-vortex motion and introduce the velocity potential function φ  as 
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The equation of continuity (mass conservation equation) is expressed by using φ  as 
    02 =∇ φ              (8-3) 
It is possible to re-write this in the following polar coordinate system form as 
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                             (8-4) 

Kinematic surface condition can be expressed after limitation the linear 
approximation as 
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   The dynamic (pressure) surface condition is expressed as the limitation of the linear 
approximation by neglecting the non-linear terms in Bernoulli’s formula:   

    0=+
∂
∂− ςφ g

t
   at  0=z                               (8-6) 

  We have so far implicitly assumed that sea water is a perfect fluid and viscosity has 
been neglected completely.  
    However, in the present problem, we assume that “it is possible to neglect the 
influence of viscosity of  seawater, but viscosity cannot be perfectly zero”.  (Hence, we 
can assume non-vorticity; further, it is possible to introduce the velocity potential 
function φ ).   

    When we also consider the influence of viscosity µ , the atmospheric pressure 0P  
is balanced not only by the normal force of the sea water zzp  but also by an 
additional force from the stretch, that is  
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Bernoulli’s equation near the surface is （ locally, we regard as the motion as 
non-vortex） 
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We substitute 00 =P  in (8-7), and then (12-8) becomes 
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Suppose φ is expressed as a wave of wave number k; then we can substitute 22 k−≈∇ ; 
hence, by  setting  νρµ ≡/2k , we have 
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Please compare (8-10) with equation (2-6) given in Chapter 2; you will notice that the 
viscosity term νφ appears as the second term on the left-hand side in (8-10).   Note 
that ν  is a small value but it is not exactly zero. 
  From (8-6) and (8-10), by eliminating , we find that the condition for φ on the sea 

surface is given as 
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    at 0=z                           (8-11) 

We can write the velocity potential function φ by satisfying (8-4) and in the following 
form 
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where 
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 Considering the surface condition (8-11), we have the following A:B ratio: 
    gkBAi −=+− )( 2 νσσ                                    (8-14) 
 
［Sea bed condition］ 

  We assume that the change in the sea bottom is given by ),,( tr θη  in (8.1); this 
takes the form of a series as follows: 
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Moreover, we set ),,( trθη  in the following form yielding 
    )()(cos tTrfnn ××= θη  

We introduce the Fourier-Bessel expansion in the form  of a Fourier series for time 
t , Bessel function （See “Suugaku Kosiki 3” (Iwanami Press) p. 149）.  The following 

formula is satisfied for any function of )(),( tTrf .  
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The kinematic condition for a sea bed is given by  
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It is possible to rewrite this by using the velocity potential function φ: 
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We subtract (8-13) from the left-hand side of (8-18), and substitute (8-16) into the 
right-hand side of (8-18); then we have  
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We can solve for A and B by using (8-14)and (8-19), and obtain the value of 
kzBkzA sinhcosh +  in (8-13) as  
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where  
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Thus, we obtain the form of the velocity potential function φ  as follows: 
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  The velocity potential φ  at the water surface and the surface displacement nς  is 

given by (8-10) as follows:  
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We finally obtain the sea surface displacement ς  in the following form:   
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We put σ  -integral in (8-22b) as σI , and we have  
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We put the denominator of (8-23) as )(σF  
  kDgkiF tanh)( 2 −−= νσσσ                                     (8-24) 
This has a form of a quadratic formula of σ.  We determine the two roots of this 

quadratic formula by solving for 21,σσ . They take the following form:   
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                             (8-25) 

It must be that if we assume viscosity ν to be absolutely zero,  they take the following 
form: 

   kDgk tanh, 21 ±=σσ                                         (8-26) 

This makes the denominator of the σ integral in (8-23) to be zero, and the value of the 
integral becomes infinite.  However, if we assume that the viscosity of sea water is 
not absolutely zero but is a small non-zero value, the zero points of the quadratic 
equation ( 0)( =σF ) are located at a little upper site of the real ( x -) axis on the 
Gaussian (complex) plane.  
 The integral in (8-23) can be calculated by the theory of residue , which is a part of the 
subject “Theory of Complex Functions” . 

[Mathematical Note]  Residue Theorem:  We consider a complex function of the form 

     )(
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where the denominator )(zg  has several zero points (poles) at naaaz ,,, 21 ⋅⋅⋅=  on 
the complex (Gaussian) plane.  It is now possible to calculate the circular integral by 
using the sum of the residues at the poles that are  located inside the integral circle as 
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follows: 
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semi-circle of the complex plane.  The residue at iaz +=  is given by 
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By applying (A-2), we have 
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We set the radius of the semi-circle to be infinite, and then we finally obtain 

       aI /π=  
Jordan’s convergence theory: If the integral path is an upper semi-circle, then  

the next limitation becomes zero in the case 0>a  in the case that the radius to be 
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We set the integral path of equation (8-23) to be an upper semi-circle of the complex 
plane.  

By using Jordan’s convergence, we can classify into two cases   

 

 Case １．When 0>−τt . In this case, the integral (8-23) for the upper semi-circle 
becomes zero for a radius ∞→R .  We can then add the upper semi-circle path with a 
real axis ( )RxR +<<− .  We can calculate the integral (8-23) as 
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where kDgk tanh=ω              (8-27) 

Case２．When 0<−τt . We should add the lower semi-circle with the real axis 
)( RxR +<<− .  Here, since there is no pole in the lower semi-complex plane, the 

integral (8-23) is zero. 0=σI . 
We finally obtain the shape of the sea surface displacement as    
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 If we give the sea bed a deformation function )(rf  and a time function )(tT , we can 

calculate the change in the sea surface by using (8-23). 
 
[Generation of a Tsunami in the case of a circle uniform upheaval of sea bed]  
    We consider the sea bed deformation as 

1. Uniform upheaval h  in a circle (radius is )ar =  
2. The time function is  

              T(τ) = 0      ,0( τ<  and )τ<T  
                   = T/1    )0( T<< τ  

 

Then, ρ-integration in (8-28) is calculated as follows: 
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The time integral is  
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where kDgk tanh=ω  

Thus, we finally obtain the shape of the water surface as 
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and 

       kDgk tanh=ω  

Hereafter, we can perform numerical calculations for the single integral of (8-32). 
  

  
Figure  Takahashi’s result (1942). 


