8. Generation of Tsunamis

8.1 Generation of Tsunamis

Most tsunamis are generated by the crustal motion of a sea bed accompanied by large
earthquakes. Earthquakes occur as a result of dislocation on a fault plane. In general,
crustal motion can cause vertical motion, upheaval, or subsidence in a sea bed. It is
possible to calculate the distribution of sea bed displacement by using a set of fault
parameters: (1) fault length, (2) width, (3) dip (inclination) angle of the fault plane, (4)
depth of the upper side of the fault plane, (5) and (6) position (longitude and latitude) of
a vertex of the plane, (7) “strike” (geological term) direction, (8) amount of dislocation,
and (9) “rake angle” of the dislocation.

In the present chapter, we assume that the displacement of the sea bed has a
uniform value in a circular area and that there is no displacement outside the area. We
take a coordinate system with the origin at a point on the averaged sea surface, and
take positive Z-axis in the vertical direction. The polar coordinate system (r,0) is

assumed in the horizotal direction, as shown in the figure.
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Fig.1  Definitions of notations

We assume that the motion of the displacement of the sea bed is given as follows:

z=-D+n(r,0,1) (8-1)
We assume no-vortex motion and introduce the velocity potential function ¢ as
0 _9¢
uv)=C--—-=) -
x' oy (8-2)

The equation of continuity (mass conservation equation) is expressed by using @ as
Vip=0 (8-3)

It is possible to re-write this in the following polar coordinate system form as

55



d¢) 1 9°% 9%
e 2¥Y_0 )
rar[ arj+ 2862+822 &

Kinematic surface condition can be expressed after limitation the linear

approximation as

_9¢ . Jd5__9¢ _
W= ot , that 1s, ot = 3z (8-5)

The dynamic (pressure) surface condition is expressed as the limitation of the linear
approximation by neglecting the non-linear terms in Bernoulli’s formula:

_9¢

ot

We have so far implicitly assumed that sea water is a perfect fluid and viscosity has

+05=0 at z=0 (8-6)

been neglected completely.

However, in the present problem, we assume that “it is possible to neglect the
influence of viscosity of seawater, but viscosity cannot be perfectly zero”. (Hence, we
can assume non-vorticity; further, it is possible to introduce the velocity potential
function ¢).

When we also consider the influence of viscosity #, the atmospheric pressure R
is balanced not only by the normal force of the sea water P, but also by an
additional force from the stretch, that is

B (au avj
Po=Pg + 4| -+ (8-7)
oX oy

Bernoulli’s equation near the surface is [ locally, we regard as the motion as

non-vortex[]

Po
P 3strec,
v
Y
0
——¢+9§+&=0 (8-8)
ot Yo,
We substitute P, =0 in (8-7), and then (12-8) becomes
¢ H oo
——+0s+—Vp=0 -
o T 96 - ¢ (8-9)

Suppose @ is expressed as a wave of wave number k; then we can substitute V? = —k?;
hence, by setting ,Uk2 I p =V, wehave
d¢

—[§+V¢}+9§=0 at z=0 (8-10)
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Please compare (8-10) with equation (2-6) given in Chapter 2; you will notice that the
viscosity term v@ appears as the second term on the left-hand side in (8-10). Note
that V is a small value but it is not exactly zero.

From (8-6) and (8-10), by eliminating , we find that the condition for ¢ on the sea

surface is given as

o’ 99 09
—+v—+9g—=0 t z=0 (8-11)
at ot 9% 8
We can write the velocity potential function @ by satisfying (8-4) and in the following
form
0=2 ¢, (8-12)
n=1
where
¢, = cosnd [ €*do [ (Acoshkz+ Bsinhkz)J,, (kr)dk (8-13)
—oo 0

Considering the surface condition (8-11), we have the following A:B ratio:

(-o? +ivo)A=—gkB (8-14)

0 Sea bed condition[]
We assume that the change in the sea bottom is given by 7(I,6,t) in (8.1); this

takes the form of a series as follows:
n= Zm (8-15)
n=0

Moreover, we set 7(6,1,t) in the following form yielding
n, =cosn@x f(r)xT(t)
We introduce the Fourier-Bessel expansion in the form of a Fourier series for time

t. Bessel function 0 See “Suugaku Kosiki 3” (Iwanami Press) p. 1490 . The following

formula is satisfied for any function of f(r), T(t).

o

7, = cosn@x f (N)xT(t) = CO:;‘Q [edo [e' T(2)dz[ 3, (kr)kdk] f(r)J, (kr)rdr
oo —co 0 0
(8-16)
The kinematic condition for a sea bed is given by
an
WI._ = — -
Wi, o m (8-17)
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It is possible to rewrite this by using the velocity potential function @:

d¢, _ 91,
== t z=-D 8-18
0z ot 2 (818)
We subtract (8-13) from the left-hand side of (8-18), and substitute (8-16) into the

right-hand side of (8-18); then we have

AsinhkD + BcoshkD = —%j f(r)J, (kr)rdr IT(r)e’"”dr (8-19)
0 —co

We can solve for A and B by using (8-14)and (8-19), and obtain the value of
Acoshkz+ Bsinhkz in (8-13) as

Acoshkz+ Bsinhkz=-P(2)| f (r)J, (kr)rdr [T(r)e""dr (8-20)
0 —oo

where
0? - 2ivo)sinhkz - gk cosh kz
P(2) = ( T ) Sal (8-20b)
(o —2ivo)coshkD — gksinh kD
Thus, we obtain the form of the velocity potential function @ as follows:
¢=>.6, (8-21)
n=0

where

o =— cozs;é’ jeimdajj(r)emdf! \]n(kr)kdk.([ J. (ko) f (p)P(2) pdp

(8-21b)
The velocity potential ¢ at the water surface and the surface displacement &, is

given by (8-10) as follows:

o= 2w
gl ot

We finally obtain the sea surface displacement S in the following form:
§=2 6 (8-22)
n=0

where
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cosné 7 T ot [ R
= [€7do [T(0)e " dz[ Q(0) 3, (kr)kek 3, (ko) f (0) pilp
—oo —oo 0 0
and
ioc+v
0)=— .
QA0) == 57 o) cosh kD — gkSnhkD (8-22b0c)
We put O -integral in (8-22b) as |, and we have
| = T —(ioc+v) -0
7 4 (0% —ivo)coshkD — gksinhkD
1 < | oO+V io(t-1)
=- e’ do -
cosh kD [, 0% —ivo — gktanh kD (823)
We put the denominator of (8-23) as F(0)
F(o)=0? —ivo - gktanhkD (8-24)

This has a form of a quadratic formula of 6. We determine the two roots of this

quadratic formula by solving for 03,0 ,. They take the following form:

Gl,azzévi\/gktanth—sz (8-25)

It must be that if we assume viscosity v to be absolutely zero, they take the following

form:

0,,0, =t/ gktanhkD (8-26)

This makes the denominator of the o integral in (8-23) to be zero, and the value of the
integral becomes infinite. However, if we assume that the viscosity of sea water is
not absolutely zero but is a small non-zero value, the zero points of the quadratic
equation (F(0)=0) are located at a little upper site of the real (X-) axis on the
Gaussian (complex) plane.

The integral in (8-23) can be calculated by the theory of residue , which is a part of the

subject “Theory of Complex Functions” .

[Mathematical Note] Residue Theorem: We consider a complex function of the form
f(2)
9(2)

where the denominator 9(Z) has several zero points (poles) at Z=a;,8,, @, on

W(2) = (A-1)

the complex (Gaussian) plane. It is now possible to calculate the circular integral by

using the sum of the residues at the poles that are located inside the integral circle as
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follows:

L CA DN I { ¢ P
§ﬁdz‘2m§lf§ g(Z)(Z a) (A-2)

= q -
Example 1: We calculate | = Im dz. Zero points are at Z=Fia

—oo

1
We consider the circular integral "= §mdz whose integral path is an upper

semi-circle of the complex plane. The residue at Z=+a is given by

. . 1 . 1.
Res(z=ia)=lim———(z—-ia) =——Ii
es(z=i8) =lim—.~— (z-ia) = -

By applying (A-2), we have
== L dz:%x[-iij:n/a
z°+a 2a
We set the radius of the semi-circle to be infinite, and then we finally obtain
| =x/a
Jordan’s convergence theory: If the integral path is an upper semi-circle, then
the next limitation becomes zero in the case @>0 in the case that the radius to be

. 1
infinite. lim| —e™ =0
Ro=d  72-C

We set the integral path of equation (8-23) to be an upper semi-circle of the complex
plane.

By using Jordan’s convergence, we can classify into two cases

Case 00O When t—7>0.1In thiscase, the integral (8-23) for the upper semi-circle
becomes zero for a radius R—> . We can then add the upper semi-circle path with a
real axis (- R<X<+R). We can calculate the integral (8-23) as
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27 27 iO'l+V i, (t-7) iO'2+V o, (t-7)
| =—“ |Res(c,)+Res(a,)]= e
7 costh[ (02) (0)]=- coshkD P 01-0,

2
= T -
. wcosw(t—7)}

where @ =,/ gktanhkD (8-27)

Caseld 0 When t—7<0. We should add the lower semi-circle with the real axis
(-R<X<+R). Here, since there is no pole in the lower semi-complex plane, the

integral (8-23) is zero. |, =0.
We finally obtain the shape of the sea surface displacement as

_ *J (kr)kdk

¢ (r,0,t) = cosnej s jT(r)a)cos{a) t— }drj f(p)Jd. (ko) pdp
(8-28)

If we give the sea bed a deformation function f(r) anda time function T(t) , We can

calculate the change in the sea surface by using (8-23).

[Generation of a Tsunami in the case of a circle uniform upheaval of sea bed|]
We consider the sea bed deformation as
1. Uniform upheaval N in a circle (radiusis = a)
2. The time function is
T(v) =0 (0<7, ana T<7)
=1/T O<z<T)

=S

Then, p-integration in (8-28) is calculated as follows:
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|, =] £(P)Io(ko)prlp

:hJ’JO(kp)pdp = %Jl(ka) (8-29)

The time integral is
t
l, = .[T(r)a)cosa)(t—r)dr

|, ={sinat —sinw(t-T)}/T t>T
=snat 0<t<T (8-30)

where @ =,/gktanhkD

Thus, we finally obtain the shape of the water surface as

g(r,t)=2(r,t)—2Z(r,t-T) £>T
=Z(r,t) (8-31)

where

sinat
IS5 (kr)d,(ka)dk  (s-32)
10 D

Z(r,t)zhaj: p—

and

@ = /gktanh kD

Hereafter, we can perform numerical calculations for the single integral of (8-32).

Figure Takahashi’s result (1942).
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